THC1-12710Technical Specifications for Semiconductor Refrigeration Chips

1. Dimensions

2. Basic electrical performance index

•	Ambient Temperature (°C)	27	Lead wire	20AWG, L=300mm, Or ordered by customer
	Maximum cooling power (Watts)	88.9	Thickness (mm)	3.5±0.1
	△T-max (°C)	≥66	Flatness & Parallelis (mm)	≤0.05
	Imax (Amps)	10	Melting point of Solder (°C)	138
	V-max (Volts)	15.4	Ceramic Material	Alumina (Al2O3)
	AC resistance (Ohms)	1.15~1.3	Mark	TEC1-12710AG
	Seal	silica gel 704	Package	500PCS per carton

TEC1-127-10 Refrigeration Device Relationship Curve

Performance curve when hot surface temperature Th=27°C Performance curve when hot surface temperature Th=50°C

Performance diagram of voltage changing with temperature difference under different currents V=f(DT)

Performance diagram of cooling with different currents (Qd)

Performance diagram of cooling capacity changes with voltage under different temperature differences Qc=f(I)

TEC1-127-10 Refrigeration Device Relationship Curve

Performance curve when hot surface temperature Th=27°C Performance curve when hot surface temperature Th=50°C

Performance diagram of voltage changing with current under different temperature differences V= f(I)

Performance diagram of total heat changes with current under different temperature differences Qh= f(I)

Performance diagram of energy efficiency ratio changes with current under different temperature differences COP= f(I)